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Abstract

In this paper, we deal with the problem of detecting the

existence and the location of salient objects for thumbnail

images on which most search engines usually perform vi-

sual analysis in order to handle web-scale images. Dif-

ferent from previous techniques, such as sliding window-

based or segmentation-based schemes for detecting salient

objects, we propose to use a learning approach, random

forest in our solution. Our algorithm exploits global fea-

tures from multiple saliency information to directly predict

the existence and the position of the salient object. To vali-

date our algorithm, we constructed a large image database

collected from Bing image search, that contains hundreds of

thousands of manually labeled web images. The experimen-

tal results using this new database and the resized MSRA

database [16] demonstrate that our algorithm outperforms

previous state-of-the-art methods.

1. Introduction

Saliency detection on images has been studied for a

long time. In recent years, many saliency detection meth-

ods [7, 11, 12, 15, 16, 18] have been designed because of its

broad applications [6, 25, 30]. However, localizing salient

objects is still a very challenging problem. In this paper, we

address the problem of judging the existence and predict-

ing the location of the salient object on thumbnail images.

As discussed in [16], this problem is clearly different from

predicting the regions where humans look, such as [14, 33].

Salient object detection has many practical applications,

such as image cropping [25, 27], adaptive image display on

mobile devices [6], extracting dominant colors on the object

of interest for web image filter [32], removing the images

that do not contain an object of interest in image search,

and so on.

There are several challenges in detecting salient objects.

On the one hand, objects have various visual character-

istics, which makes it hard to differentiate salient objects

from the background according to appearance only. On the

other hand, thumbnail images have a low resolution (e.g.,

130 × 130), which is enough for a human to recognize the

salient object but makes it difficult to get a reliable segmen-

tation that some previous salient object detection methods

rely on.

1.1. Related work

Sliding window-based method. Sliding windows detect

salient objects by combining local cues. Given a window on

the image, the system evaluates the probability of the win-

dow containing an object. Heuristic methods that evaluate

windows on a single saliency map are efficient [17]. The

detection accuracy, however, is not guaranteed.

Alexe et al. [2] propose an “Objectness” [2] measure

to localize objects in an image. They combine various

“Objectness” cues, such as multi-scale saliency, edge den-

sity, color contrast and superpixel straddle, into a Bayesian

framework. One later work [23] instead proposes a limited

number of object bounding box candidates. Compared to

“Objectness”, this approach adopts more robust visual cues

and uses Structured SVM [28] for ranking the candidates.

A feature cascade scheme is then used for acceleration. Al-

though the cues provided by the previous methods are ef-

fective, for the local characteristics around a single window,

the produced bounding box might not be globally the best.

Feng et al. [9] compute the window saliency based on

superpixels. They use all the superpixels outside the win-

dow to compose the the inside ones, thus the global image

context is combined. Although higher precision is achieved

compared with “Objectness” [2], the mono scale super-

pixel segmentation they use sometimes performs poorly on

thumbnail images, which may make the composition fail.

Segmentation-based method. Alternative approaches

generate a salient object bounding box through segmenting

the salient object based on the saliency maps.

Marchesotti et al. [19] proposed to retrieve similar im-

ages, and they separately model the object and background

based on those retrieved images. The final saliency re-

gions are segmented via graph cut optimization. However,

appearance-based retrieval depends highly on the database,

which limits the generalization of the system.

The algorithm of Liu et al. [16] learns to optimally find

weights by incorporating various saliency cues from the im-

age. A binary segmentation step is then applied to find the

salient object, but the procedure may suffer from noisy re-
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(a) (b) (c) (d)
Figure 1. (a) Background images with needless salient object

bounding boxes from (b) Alexe et al. [2] (c) Feng et al. [9] and

(d) Liu et al. [16].

gions yielded from bounding box based training images. To

avoid this defect and achieve global optimization, Chen et

al. [7] apply Grab-cut [24] to iteratively refine the segmenta-

tion based on their proposed saliency maps. Wang et al. [31]

integrate Auto-context [29] into the saliency cut for combin-

ing context information. Nevertheless, they train the classi-

fier on the pixel level within each iteration, which slows

down the progress.

Under our scenario, we focus on proposing an algo-

rithm that efficiently generates one global optimal bound-

ing box for object localization. This is under the consider-

ation that most thumbnail images on the web contain a sin-

gle salient object. Also, a single box is good to use for web

image applications, such as thumbnail cropping [25, 27].

Nevertheless, sliding window-based schemes always pro-

pose too many candidate bounding boxes, thus it is per-

plexing to choose the best one for mentioned applications.

Segmentation-based methods generally propose one global

salient object region, but iterative approaches like [7, 31]

make the algorithms inefficient in practical usage.

More importantly, detecting the existence of salient ob-

jects has not been concerned before localization by previous

arts. This may lead to unexpected results for background

images with repeating pattern, as illustrated in Fig. 1.

1.2. The framework

To deal with the issues mentioned in Sec. 1.1, we devel-

oped a salient object detection system with the framework

shown in Fig. 2.

Firstly, targeting at detection on web images, a web im-

age database is constructed with each image manually la-

beled as a background image or an object image with a

bounding box enclosing the salient object region. Then,

the features capturing the object’s salient information from

multiple channels are extracted. After that, two phases fol-

lowed: object existence verification and localization. For

detecting the object existence, we apply a binary classifi-

cation approach. For localization, rather than through time

Figure 2. The framework of our salient object detection system.

The pipeline of dotted arrows shows the training procedure and

the pipeline of solid arrows shows the testing procedure.

costly segmentation or local sliding window, we learn a re-

gression function through random forest [4] from the la-

beled database to directly predict the position of the salient

object. Finally, given a test image, the extracted features

could be fed into the trained classifier and regressor to get

the final results.

The remainder of the paper is organized as follows: Sec-

tion 2 introduces the web image database we constructed.

Section 3 presents the detail of the algorithm. In Section 4,

we describe the evaluation experiments. Section 5 gives a

conclusion of the work.

2. Web Image Database

We created a web image database by asking users to

draw a rectangle to specify the location of a salient object

region within an image. Unlike the MSRA object saliency

image set [16], our database has several different aspects:

Image sources. Our web images are from real searching

queries. We searched 1100 queries and downloaded 400

thumbnail images for each query. In total, more than 400k

images are collected. In the selection process, for object

images, we pruned the image without a single salient object

region such as the image composed by many sub-images

or including several objects in a cluttered layout, leaving

approximate 300k images. All the images are around 130×



(a) Background Images

(b) Labeled Object Images

Figure 3. Example images in web image database. The back-

ground images (a) and the object images (b). The green box in

each image in (b) is the manually labeled ground truth.

130. Furthermore, we consider not only the object images

containing a salient object region, but also the background

images containing no object from queries, such as “desert”,

“ocean”, “forest” and so on.

Labeling scheme. Formally, each image I(x) is assigned

a corresponding label vector y = (o, t, l, b, r), where x rep-

resents a pixel, o indicates wether a salient object region is

presented in the image or not, and (t, l, b, r) represents the

top, left, bottom and right positions of the bounding box

within the image.

Due to the large size of the database, all images are sepa-

rated into disjoint parts and labeled by different users. Each

image is labeled once. In terms of our observation, the la-

beling distinctions between different users are subtle, espe-

cially when labeling on thumbnail images.

Moreover, to further ensure the labeled bounding boxes

are consistent between different users, we set two rules for

users to follow. First, the labeled rectangle should enclose

the entire object respecting the object boundaries. Second,

when multiple objects exist, the rectangle should cover the

salient objects which are overlapped or very close to each

other. The labeled examples are shown in Fig. 3.

Bounding box distribution. Inspired by [23], we also

computed the distributions of the labeled bounding boxes

on our web image database. From Fig. 4, a bias of the la-

beled boxes is revealed indicating the bounding boxes’ size

is relatively large and the centroid position is generally not

far from the image center.
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Figure 4. The learned distributions (100 × 100) of labeled object

bounding boxes (redder is higher): height versus width, height ver-

sus row location, and width versus column location.

3. Proposed Algorithm

Input & output space. Given a set of training fea-

tures {f1, . . . , fn} ⊂ X and their associated output la-

bels {y1, ...,yn} ⊂ Y , where n is the number of im-

ages and fi is the global feature of image Ii(x), we wish

to learn a mapping g: X → Y . Here the output space

Y , {(o, t, l, b, r)|o ∈ {+1,−1}, (t, l, b, r) ∈ R
4 s.t. t <

b, l < r}, in which the output vector (o, t, l, b, r) is defined

in Sec. 2.

In our scenario, as illustrated in Fig. 2, we separate such

a problem into a classification problem and a localization

problem because under the large amount of data, handling

both problems together leads to high computational cost in

training, such as [3] utilizing Structured SVM. So the whole

output space Y is split into a binary classification space de-

fined as O , {+1,−1}, and a localization space defined

as W , {(t, l, b, r)}. Thus, the mapping function is now

g = (gc,gl), where gc represents the mapping: X → O
and gl represents the mapping: X → W .

3.1. Creating features

Fig.5 shows the computed object saliency maps from

several image examples. Clearly, for background images,

the salient contents in images are always scattered, or

there’s no obvious salient regions. While images contain-

ing an object generally produce a saliency map with a com-

pact and closed salient region delivering the object bound-

aries. This attributes to the dissimilar appearance between

the objects and the surrounding background. According to

the observation, our feature vector f is constructed based on

saliency information.

As Alexe et al. [2] indicated, the saliency of an object

could be represented by multiple cues including silhouette,

appearance contrast etc. Similarly, for our model, differ-

ent object saliency cues as showed in Fig. 6, are taken

into account for the final feature vector. Here we applied

pixel, regional and global level object cues: the pixel level

information is from Multi-scale Contrast (MC). The re-

gional level information is from Center-Surrounding His-

togram (CSH) and spatial weighted Region-based Contrast

(RC). The global level information is from Color Spatial-

Distribution (CSD). RC is proposed by [13] and MC, CSH,

CSD are proposed by [16]. For the space limitation, we

refer readers to the original papers for details.



With a number of saliency maps Sk(x) in which k =
1, . . . ,K and K = 4, we normalized all the saliency maps

into [0, 1] and fuse them into a single feature vector via two

strategies:

1) Stack:

Partition each Sk(x) into N = p×p blocks in a grid lay-

out, and the average value in each block is extracted, which

results in a feature vector fk. Then stack all fk into a final

feature vector of length K × p × p. We set p = 30 in our

experiments. The feature vector of in our case is written as:

fall = [ fTRC , f
T
MC , f

T
CSH , fTCSD]T . (1)

2) SumUp:

Combine all the saliency maps into one single map

Sall(x) similar with [16], then partition Sall(x) to extract

fall. In this work, we apply a non-linear combination of

multiple saliency values as:

Sall(x) = (

K
∑

k=1

λkSk(x))
2, (2)

where λk is the weight of the kth saliency map. Respect-

ing the object boundaries, we learn the combination coef-

ficients λk through the Conditional Random Field (CRF)

scheme [16] from the salient object image set with accu-

rate object-contour ground truth provided by [1]. This is

because the database is similar to our web image database

with images containing a single salient object. We found

that the corresponding weights for RC, MC, CSH and CSD

are 0.44, 0.17, 0.18 and 0.21.

The square in Eqn.(2) aims to relatively enhance the

salient region and suppress the weak salient part for regres-

sion. In our experiments, we separately tested the “Stack”

and “SumUp” combination strategy and found that the

“Stack” is good at classification while “SumUp” achieves

higher localization scores (See Sec.4 for details).

Figure 5. Background images (the 1st row), object images (the

3rd row) and their corresponding RC [13] saliency maps (the 2nd

row) & (the 4th row). Obvious distinctions exist between two

types of images.

Figure 6. Creating features for regression. The dash arrows in-

dicate the map computation. The solid arrows represent the map

combination. The dash dot arrows tell the rectification and the

grids mean the feature extraction

3.2. Detecting object existence via classification

Given the training feature, we feed the features into the

simple and powerful random forest classifier [4] to learn the

mapping gc, as the highly variational and non-linear sepa-

rable property of our feature points.

In the web image database, the ratio between object im-

ages and background images is nearly 10 : 1. The highly

imbalanced training data negatively affects the accuracy of

classifier, since random forest tends to be biased towards

the majority class. Normally this problem has two solu-

tions: one is to adjust the weights between different classes

through cost sensitive learning and the other one is down-

sampling the majority class or up-sampling the minority

class [5]. In our problem, many web images have an object

covered the center part with similar shapes and sizes, which

means that many redundant feature points exist for training

the classifier. Thus we apply the down-sampling scheme to

train a balanced random forest classifier. We give the details

on how we do this in Sec.4.1.

3.3. Translation and scale invariance feature

According to the obvious bias of the bounding boxes’ po-

sition and size reported in Sec. 2, the random forest regres-

sion prefers to generate a relatively large rectangle around

the image center area. Thus, for images with a small ob-

ject or with an object shifting away from the image center,

sometimes the regressor lacks supporting data for predic-

tion. To deal with this translation and scale variation prob-

lems, we perform a rectification on the saliency map Sall(x)
combined through Eqn.(2).

Fig. 6 shows our procedure of the rectification for bet-

ter regression features. In the first step, we fit a single two

dimensional un-normalized Gaussian model to the com-

bined salient map. The Gaussian function takes the form:



G(x) = Ae−(x−µ)TΣ−1(x−µ) where the Σ =

(

σ2
x 0
0 σ2

y

)

.

For G(x), we regard the 2D position of the pixel x as its

input and the saliency value Sall(x) as the output. Through

least square estimation, we find A, µ,Σ by minimizing the

objective
∑

x
(G(x)− Sall(x))

2.

After the estimation, we translate the image center to the

position µ = (µx, µy)
T and crop the image on coordinate x

based on the estimated σx. Particularly, we define the range

of coordinate x on the image to be [µx − λσx, µx + λσx].
A similar operation is conducted on coordinate y. Because

that some noisy regions affect the fitting, the procedure is

repeated within the rectangle area 2∼3 times, resulting in a

stable rectified region. In our experiments, we set λ = 3
by validating the regression results on a small constructed

training set containing 500 web images. Through the rec-

tification, the feature vector is then extracted by “Stack” or

“SumUp” as in Sec. 3.1.

3.4. Localizing object via regression

Here we model the mapping gl by learning the posterior

distribution p(w|f) through regression, with our training set

{f (n),w(n)}Nn=1 in which f ∈ X and w ∈ W .

As indicated by Pauly et al. [22], for the high-

dimensional feature space, which is our case, partitioning

the input space into an ensemble of cells can reduce the

complexity, and modeling within each cell could be simple.

Formally, the partition is defined as: P = {Ct}
T
t=1. Based

on the training data in each cell, the posterior of variable w

could be modeled as a multivariate Gaussian distribution,

i.e. p(w|Ct,P) = Nt(µt,Σt). In [4], Breiman demon-

strates that replacing a single partition P with an ensemble

of independent random partitions {Pz}
Z
z=1 leads to an en-

semble regressor achieving better performance.

In this paper, we apply random forest [4] to construct

the multiple partition {Pz}
Z
z=1 and train the Gaussian dis-

tribution in each cell. This technique has been formerly

used to localize organs in medical images [22] and to esti-

mate the poses in depth images [10] for its efficiency. Then

given a feature point f , f would fall into a specific cell Cz in

each partition Pz . The posterior probability estimated from

different partitions in Random Forests are then combined

through averaging, i.e. p(w|f) = 1
Z

∑

z P (w|Cz,Pz). Fi-

nally, we can estimate in one shot the position of the object

of interest contained in the bounding box ŵ using the math-

ematical expectation: ŵ =
∫

w
wp(w|f)dw.

4. Experiments

We conducted our evaluation based on two databases.

The first one is the MSRA image set B with images resized

into 130 × 130 by the bi-cubic method, thus to simulate

the thumbnail images. The MSRA B database contains 10
folders and each folder includes 500 images. All images

Technique RC MC CSH CSD SumUp Stack

SVM
74.9

±7.4

74.2

±5.8

76.9

±3.4

66.9

±1.9

67.9

±2.9

81.4

±6.3

RF
75.8

±5.7

76.4

±1.4

77.6

±2.3

67.5

±1

69.1

±1.6

82.8

±3.5

Table 1. Classification accuracy of various features and techniques

in classifying object images and background images.

contain one single salient object. The characteristic of this

database is that all the images selected have high human

label consistency, which is suitable under our scenario. The

second one is the web image database which is described in

Sec. 2.

Our experiment includes both evaluations of classifica-

tion and localization. Unless otherwise specified, our pa-

rameters for random forest were set as: 200 trees, the mini-

mum node size is set to 15. All experiments run on a quad-

core 3.2GHz computer.

4.1. Classification evaluation

In the MSRA B image set, there is no background image.

For evaluating the classification performance, we added

background image samples from the web image database.

In detail, as stated in Sec. 3.2, we down-sampled the object

images of the web image database randomly, and 3k images

in the MSRA B database and 5k in web image set are pro-

posed. The background images include randomly selected

5k images.

By applying the features as stated in Sec. 3.1, we got

an acceptable accuracy in Table. 1. We also show the av-

erage accuracy of random forest (RF) classifier is superior,

compared with SVM with RBF-kernel by 5-cross valida-

tion. The failure examples, as showed in Fig. 7, are often

the cases that the background image has high contrast in the

center area or the object’s appearance inside the image is

similar to the background.

4.2. Regression evaluation

To test the regressor’s ability, the localization evaluation

is conducted under the object images. For the MSRA B
database, we randomly selected 9 folders (4500 images) for

training and use the rest one (500 images) for testing. For

the web image database, we took out 20k images for train-

ing and 5k images for testing.

(a) (b) (c) (d)
Figure 7. Wrongly classified background image (a) and object im-

age (c) with their corresponding RC saliency maps (b)&(d).



4.2.1 Training parameters

As stated by previous methods [10, 26], random forest

is sensitive to it’s parameters. Here we investigate two

most influential parameters affecting the regression accu-

racy through testing over the images from the web image

database.

Number of training image. In Fig. 8(a), we show how

boundary displacement error (BDE) which is presented by

Eqn.( 5) decreases with the increasing of the number of ran-

domly generated training images. The graph illustrates that

the error seems to tail off at 10k images. This situation is

mostly due to the limited correlation between bounding box

in the database and the saliency maps.

Minimum size of each node. Minimum node-size con-

trols the size of each tree. Smaller node-size would lead to

deeper trees, but cost more time to generate and vice versa.

We also tested the effect of this parameter in Fig. 8(b). In

our experiment, we showed that the random forest regressor

over-fits the data when the node-size is smaller than 15.

4.2.2 Effectiveness of features

To test the effectiveness of each salient feature, we incre-

mentally add different saliency maps into the feature vector.

Fig. 8(c) shows that the BDE error decreases when we add

different features sequentially. This implies our saliency

features are complementary. Note that our method is not

limited to just these types of saliency maps, if we relax the

consideration of time cost, better results can be achieved by
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Figure 8. The training conditions vs. Regression error (a) Number

of training images. (b) Minimum data number of leaf node. (c)

Number of Saliency map (RC,CSD,MC,CSH are added sequen-

tially). (d) Additionally add other global features (Original fea-

tures, GIST of the saliency map, HOG of the image, GIST of the

image are added sequentially).
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(c) Boundary Displacement Error

Figure 9. Quantitative comparisons on MSRA B image set (Left

column) and the web image database (Right column).

including other features. To demonstrate this, we integrate

the GIST [21] and HOG [8] image descriptor to see whether

the error can be further reduced. Fig. 8(d) shows the result,

where we show that by adding GIST descriptor computed

from combined saliency map, the BDE drops further, how-

ever, adding the GIST and HOG descriptor computed from

the image shows little influence. This is perhaps because

the GIST descriptor on the saliency map also captures the

shape of salient region.

4.2.3 Comparison with other approaches

We compared our localization method with three leading

salient object localization approaches. The first is the re-

trained “Objectness” [2], and the second is the superpixel

composition [9] (SC). Because these methods propose mul-

tiple ranked detections, we use the returned bounding box

with the highest score in our setting to make the comparison

valid. The third method is segmentation based method [16]

(LTD). We further add a baseline of our rectifying bounding

box (Rect. BBox). All the comparison are conducted on the

two datasets.

Quantitative comparison. With the labeled ground truth

bounding box Bgt and the detected bounding box Bd in



an image, we use the region-based and edge-based mea-

surements similar with the one proposed by “LTD”. We

further induce the Recall-Overlap measurement from [23].

The region-based measurement includes Precision, Recall,

F-measure, and Recall-Overlap.

Precision and Recall are mathematically defined as:

Precision = area(Bgt ∩Bd)/area(Bd), (3)

Recall = area(Bgt ∩Bd)/area(Bgt).

The F-measure is the weighted harmonic of Precision and

Recall with the parameter α:

Fα =
(1 + α)× Precision×Recall

α× Precision+Recall
. (4)

We set α = 0.5, following the previous work [20].

The Overlap-Recall curve is the recall rate of ground

truth bounding boxes from the database by changing the

threshold of the overlap score. The overlap score for ex-

periments is based on the PASCAL VOC criterion defined

as:
area(Bgt∩Bd)
area(Bgt∪Bd)

.

For edge-based measurement, the Bounding box Bound-

ary Displacement Error (BDE) in the pixel level described

by [13] is tested, which is defined with the L1 norm as:

BDE =
‖Bgt −Bd‖1

4
. (5)

We measured these the criteria by averaging over all test

images. Fig. 9 shows the results on the MSRA B image set

and the results on our web image set.

Under the web applications mentioned in Sec. 1, the ex-

pected result of one image prefers a bounding box close

to the human labeled result. This means that the high re-

call rate is preferred with the overlap upper 0.5 as presented

by [23]. As can be seen in Fig. 9(a), we achieve the high-

est in this scenario. Moreover, as showed in Fig. 9(b) and

Fig. 9(c), our method also outperforms others.

Qualitative results. To better understand the quantitative

results, Fig. 10 gives several examples with ground truth to

visually compare the results from our method and the oth-

ers. The bounding boxes produced by Objectness [2] tend

to enclose a local salient region, which performs relatively

poor on both precision and recall. SC [9] combines global

context, but the generated bounding boxes often just cover

a part of the salient object, which achieves very high pre-

cision but very low recall. The segmentation results given

by LTD [16] tends to segment out the connected homoge-

neous region which can be easily affected by noisy saliency.

Our algorithm produces more precise bounding boxes than

previous methods, albeit the edges of the bounding boxes

are not perfectly aligned with the object boundaries. Our

results’ superiority is mostly due to the reason that the ran-

dom forest automatically exploit the information from the

global image saliency among the whole images set. More

results are shown in Fig. 11.

(a) (b) (c) (d) (e)
Figure 10. Qualitative comparisons between (a) the Objectness [2]

(b) SC [9] (c) LTD [16] (d) Our approach and (e) Ground Truth.

Time cost. At last, Table 2 compares the average com-

puting time of all the methods. We use the author’s im-

plementation for Objectness, SC and LTD. Comparing ours

and LTD, the time cost on computing saliency maps (Sal.

Map) is close , but the Localization (Loc.) time of ours sig-

nificantly outperforms the LTD’s CRF inference and suffi-

ciently efficient for real-time applications.

5. Conclusion and Discussion

We presented a large labeled web image database and a

supervised scheme that judges the existence of and predicts

the location of the salient object in thumbnail images. Our

algorithm exploits random forest and global saliency with

features created from the saliency maps combining infor-

mation of multiple channels. We test the system and show

promising results compared to several state-of-the-art algo-

rithms.

Fig. 12 also shows some failure cases. By looking at

the saliency map, we can still see that the bounding box

contains the salient information well. Unfortunately, the

saliency map provides poor guidance for the regression

function. These cases also indicate that people detect the

salient object along with their cognitive process, which

Method Objectness [2] SC [9] LTD [16] Ours

Time(s) 3.4 0.3
Sal. Map: 3.7

Loc.: 11

Sal. Map: 4.4

Loc.: 0.02

Code Matlab+C C++ Matlab+C Matlab+C

Table 2. Average time comparison to localize a web image of size

(130× 130).



(a)

(b)

Figure 11. Detection results on (a) the MSRA B database and (b)

our searched web image database

(a) (b) (c) (d)
Figure 12. Failure cases. Object image (a)&(c) and the corre-

sponding saliency map (b)&(d). Blue, Green, Red box is the

Ground Truth, rectified region and our result respectively.

leads to another challenging issue of detecting saliency by

combining semantics.
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